Уравнения продольного движения самолета
Обычно полёт самолёта рассматривают как движение в пространстве абсолютно жёсткого тела. При составлении уравнений движения используют законы механики, позволяющие в самом общем виде записать уравнения движения центра масс самолёта и его вращательного движения вокруг центра масс.
Исходные уравнения движения вначале записывают в векторной форме
,
,
где
m – масса самолета;
– равнодействующая всех сил;
– главный момент внешних сил самолёта, вектор суммарного вращающего момента;
– вектор угловой скорости системы координат;
– момент количества движения самолёта;
t – время.
Знак «» обозначает векторное произведение. Далее переходят к обычной скалярной записи уравнений, проектируя векторные уравнения на некоторую систему координатных осей.
Получаемые общие уравнения оказываются настолько сложными, что, по существу, исключают возможность проведения наглядного анализа. Поэтому в аэродинамике летательных аппаратов вводятся различные упрощающие приёмы и предположения. Очень часто оказывается целесообразным разделить полное движение самолёта на продольное и боковое. Продольным называется движение с нулевым креном, когда вектор силы тяжести и вектор скорости самолёта лежат в его плоскости симметрии. Далее будем рассматривать только продольное движение самолёта (рис. 1).
Это рассмотрение будем вести с использованием связанной ОXYZ и полусвязанной ОXeYeZe систем координат. За начало координат обеих систем принимается точка, в которой расположен центр тяжести самолета. Ось ОX связанной системы координат проводится параллельно хорде крыла и называется продольной осью самолета. Нормальная ось ОY перпендикулярна оси ОX и расположена в плоскости симметрии самолета. Ось ОZ перпендикулярна к осям ОX и ОY, а следовательно, и к плоскости симметрии самолета. Она называется поперечной осью самолета. Ось ОXe полусвязанной системы координат лежит в плоскости симметрии самолета и направлена по проекции на неё вектора скорости. Ось ОYe перпендикулярна оси ОXe и расположена в плоскости симметрии самолета. Ось ОZe перпендикулярна к осям ОXe и ОYe.
Остальные обозначения, принятые на рис. 1: – угол атаки,
– угол тангажа,
– угол наклона траектории,
– вектор воздушной скорости,
– подъемная сила,
– сила тяги двигателей,
– сила лобового сопротивления,
– сила тяжести,
– угол отклонения рулей высоты,
– момент тангажа, вращающий самолёт вокруг оси ОZ.
Запишем уравнение продольного движения центра масс самолёта
, (1)
где – суммарный вектор внешних сил. Представим вектор скорости с использованием его модуля V и угла его поворота
относительно горизонта:
.
Тогда производная вектора скорости по времени запишется в виде:
. (2)
С учётом этого уравнения продольного движения центра масс самолёта в полусвязанной системе координат (в проекциях на оси ОXe и ОYe) примут вид: