Классификация СМО и их основные элементы

Водный транспорт » Транспортная система. Морской порт » Классификация СМО и их основные элементы

Страница 3

Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным согласно процесса Пуассона.

Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины: Описание: Описание: Описание: a= \sigma^{2}\,

Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.

Одноканальная СМО с ожиданием и неограниченной очередью

Перейдем теперь к рассмотрению одноканальной СМО с ожиданием без ограничения на вместимость блока ожидания (т.е. Ν → ∞). Остальные условия функционирования СМО остаются без изменений.

Устойчивое решение в такой системе существует только тогда, когда λ<μ, то есть заявки должны обслуживаться с большей скоростью, чем поступают, в противном случае очередь может разрастись до бесконечности.

Одноканальная СМО с ожиданием и ограниченной очередью

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания — случайная величина, подчиненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Страницы: 1 2 3